TABLE OF CONTENTS

1. INTRODUCTION
1.1 Model number designation
1.2 Description of elements
1.3 Specifications
1.4 Overview
1.5 LCD displays

2. OPERATION
2.1 Accumulative total display
2.2 Resettable total display
2.3 Rate display
2.4 Low frequency cut-off
2.5 Inhibit total function
2.6 Keypad function matrix

3. INSTALLATION – GRN housing / Aluminium Alloy housing
3.1 Mounting - GRN
3.2 Flowmeter connections - unpowered sensors
3.3 Wiring connections

4. PROGRAM PARAMETERS
4.1 PIN number program protection
4.2 Resetting accumulative total
4.3 Engineering units
4.4 K-factor (flow input scale factor)
4.5 Rate conversion factor
4.6 Rate dampening (see response graph page 19)
4.7 Low frequency cut-off (refer clause 2.4 page 5)
4.8 Pulse outputs (scaleable or non-scaleable)
4.9 Non linearity correction (NLC) Linearisation
4.10 Presetting battery power levels

5. ADDITIONAL PROGRAM PARAMETERS
5.1 Analog output
5.2 Flow alarms
5.3 Flow alarm deadband
5.4 Dual flow inputs

6. PROGRAMMING
6.1 Program levels 1~7
6.2 Program levels 8~13
6.3 Program levels 14~24
6.4 Program detail record

7. TERMINAL LAYOUT, SELECTION LINKS & REMOTE SWITCHES
7. Panel mount template

8. ALPHABETICAL INDEX
1.1 Model number designation

<table>
<thead>
<tr>
<th>Model</th>
<th>Function</th>
<th>Electrical access</th>
</tr>
</thead>
</table>
| RT12 | Flow rate totaliser | 1 3 x M20 x 1.5mm female GRN (3 x M16 x 1.5mm Alloy)
2 3 x 1/2" NPT female threaded conduit entry ports |

Flow input type

- Digital (pulse or frequency)

Power supply

- Self powered (battery) or regulated 8~24Vdc

Housing type

<table>
<thead>
<tr>
<th>FM</th>
<th>GRN Universal mount (field or panel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>GRN Integral meter mount</td>
</tr>
<tr>
<td>FA</td>
<td>Alloy universal mount housing (field or panel)</td>
</tr>
<tr>
<td>MA</td>
<td>Alloy integral meter mount</td>
</tr>
</tbody>
</table>

Options

- Relay control output board
- I.S. intrinsically safe Ex ia IIB T4 - IECEX & ATEX

Facia protector - for Alloy only

Model No. example

RT12 1 D 0 FM I P
Introduction

Non I.S. battery
Factory P/No. 1312007

I.S. battery
Factory P/No. 1412028

Press & hold Program key to show software version

Software version

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 3.2</td>
<td>Dec 2004</td>
</tr>
<tr>
<td>V 3.3</td>
<td>Apr 2007</td>
</tr>
<tr>
<td>V 3.4</td>
<td>Feb 2010</td>
</tr>
<tr>
<td>V 3.5</td>
<td>Apr 2011</td>
</tr>
</tbody>
</table>

Replacement Batteries:

Factory supplied batteries:

Non I.S. battery
Factory P/No. 1312007

I.S. battery
Factory P/No. 1412028

Suitable batteries also available from:

<table>
<thead>
<tr>
<th>RS Components</th>
<th>Farnell Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock No. 596-602</td>
<td>Order code 206-532</td>
</tr>
</tbody>
</table>

3.6V x 2.4Ah AA
Lithium Thionyl Chloride
non-rechargeable cell
4 Introduction

1.2 Description of elements

1.2.1 GRN (Glass Reinforced Nylon) Housing

1.2.2 Aluminium Alloy Housing
1.3 Specifications

Display: 8 digit alpha numeric LCD characters 9mm (0.35") high with second line subscript text, 8 digits totalising, 5 digits rate. Programmable 0~3 decimal places for all displays.

Signal Input: Universal pulse/frequency input compatible with Reed switch, Hall effect, Namur proximity detectors, Pulse wire, voltage, current & Coil (15mV P-P min). Max. input frequency 10KHz. Minimum input frequency for rate display is 0.1hz with low frequency cut off feature enabled, 0.3hz when disabled & 0.7hz if the non-linearity feature is enabled. Totals have no minimum.

Battery power: Battery life expectancy can be up to 5~10 years when programmed with the unique “Ultra Power Save” sleep cycle. Battery life reduces when connected with a coil input from turbine flowmeters. Rate display defaults to total display 4 minutes after pressing the rate key in order to conserve battery power. (reverse polarity protected)

External power: Regulated 8~24Vdc x 150mA or 4~20mA loop powered.

Memory: All programmed & accumulated data is stored permanently in non-volatile memory.

Pulse output: NPN-PNP transistor, scaleable (50hz max.) or non-scaleable (5000hz max.), 1A maximum drive capability.

Analog output: Two wire loop powered, 12~28Vdc into 100~900Ω loop load, accuracy +/-0.25% FS, key entry programming of Zero & Span.

Alarm outputs: Two NPN-PNP selectable FET (transistors) programmable low & high flow alarm with adjustable dead band (reset differential). Maximum drive 100mA resistive load. 24Vdc max.

Physical: Temperature range from -20°C to +80°C (-4°F to +176°F).

GRN housing:
A) IP66 / 67 high impact glass reinforced nylon enclosure.
B) 3 x M20 or ½" NPT female conduit entries.
C) 125mm diameter (5") x 61mm deep (2.5") x 400g (0.9lb).

Alloy Housing:
A) IP66 aluminium alloy with 0.3% magnesium (6% is maximum for mine sites).
B) 3 x M16 x 1.5 female conduit entries.
D) 114mm (4.5") wide x 96mm (3.8") high x 62mm deep (2.5") x 480g (1lb).

Configuring: PIN protected data entry with scrolling English text prompts.

K-factor range: Eg. Pulses/litre, gallon, lb etc. Programmable range is 0.001~9999999.999 with a floating decimal point during K-factor entry.

Engineering units: Selectable Ltr, gal, m3, kgs, lbs (total). /sec, min, hr or day (rate).

Rate conversion: Enables the rate to be displayed in different engineering units to that of the totals eg: totals in barrels (oil) & rate in US gallons.

Battery modes: Ultra power save, standby or continuous display selectable.

Dual Input option: Programmable for computations of A+B, A-B, or A÷B (ratio) or FUEL (diesel fuel loops).
1.4 Overview
The instrument is specifically designed for computing, displaying and transmitting totals and flowrate from flowmeters with pulse or frequency outputs.

The instrument will display Flow Rate, Resettable Total and an Accumulated Total in engineering units as programmed by the user. Simple flow chart programming with scrolling English prompts guide you through the programming routine greatly reducing the need to refer to the instruction manual. All user program data is retained if the battery is removed.

Environments for GRN housing
The instrument is weatherproof to IP66/67 (Nema 4X) standards, UV resistant glass reinforced nylon with stainless screws & viton O-ring seals. The instrument suits harsh indoor and outdoor environments & conforms to EMC directive 89/336/EEC Electro Magnetic Compatibility.

Environments for Aluminium Alloy Housing
The instrument is weatherproof to IP66/67 (Nema 4X) standards, constructed in ADC12 aluminum alloy with stainless screws & viton O-ring seals. The instrument suits harsh indoor and outdoor environments & conforms to EMC directive 89/336/EEC Electro Magnetic Compatibility.

Features
10 point Linearisation, PIN Protection, NPN/PNP selectable autoranging pulse outputs (scaled or un-scaled), Low frequency cut-off, Battery conservation mode, 4~20mA output, High / Low flow alarms with adjustable deadbands, Dual inputs. Optional I.S. certification to IECEx and ATEX directive, for conforming standards refer to I.S. supplement.

Installation
Specifically engineered to be directly mounted on a variety of flowmeters, wall or surface mounted, pipe or panel mounted. Various mounting kits are available. The instrument can be self powered or may be powered by an external dc supply or two wire loop powered.

1.5 LCD displays

Full LCD display test feature illuminates all display segments and script text displays for 5 seconds when entering the program mode.

Rate display has flashing SEC, MIN, HR or DAY followed by up to 5 digits of rate programmable for up to 3 “floating” decimal places.

The 8 digit Total display is push button or remote resettable and can be programmed for up to 3 decimal places.

The 8 digit Accumulative Total display can be programmed for up to 3 decimal places. Reset is only possible when in the program mode which can be PIN protected for security.
2. OPERATION

2.1 Accumulative Total
Accumulative total can be reset at L2 in the program mode. The accumulative total can be displayed momentarily or continuously through use of the front panel ACCUM TOTAL key.

Momentary display: Accumulative total is displayed only whilst the key is held pressed.

Latching display: To have the accum. total display latch when key is pressed simply press & hold the ACCUM TOTAL key for 10 seconds, the display will then latch each time the key is pressed. Holding the accumulative total key again for 10 seconds will revert this key function back to a momentary action.

2.2 Resettable Total (also see page 18 for remote reset feature)
The display toggles between Rate & Total when the RATE-TOTAL key is pressed. Pressing the RESET key whilst displaying total will cause the total to reset to zero.

2.3 Rate display
When rate is displayed the leading three alpha characters on the left of the display “flash ” the time base for rate eg. rate /SEC, rate /MIN, rate /HR, or rate /DAY. Decimal points float to provide good resolution & rangeability.

Note: Rate display updates twice / second & will default back to total display after 4 minutes when the instrument is battery powered, if externally powered rate display updates are more dynamic & will display continuously when selected.

The minimum input frequency for rate display is 0.3hz reducing to 0.1hz If the low frequency cut-off is set to 0.1Hz (see below) & 0.7Hz with NLC enabled.

2.4 Low frequency cut-off
The low frequency cut-off is most commonly set to 0.0Hz (disabled) other than to:

1) To display rate for input frequencies below 0.3hz for GRN housing type and 0.25hz for Alloy housing type, for example setting the cut-off at 0.1Hz the rate will continue to display for input frequencies as low as 0.1Hz (one pulse every 10 seconds), such conditions often apply to flowmeters with low resolution pulse outputs (low frequency) or flowmeters with a high operational turndown (maximum to minimum flow rate).

2) Inhibit the integration & registration of “apparent flow” which at times may be encountered on mobile installations where the movement of the vehicle or dead heading a pulsating pump may cause spurious flow signals which are not attributed to actual flow.

3) Inhibit the integration & registration of flow at input frequencies below what is considered the minimum accurate flow rate of the primary flow element (flowmeter).

Caution: If the low frequency cut-off is set to any value other than 0.0Hz then the integration of rate and total will cease at frequencies on or below the set frequency value (HERTZ).

2.5 Inhibit total (see wiring schematic page 18)
With the remote “inhibit total” switch closed the instrument will display flow rate but at the same time will inhibit the resettable & accumulative totalising functions.
2.6 Keypad function matrix

<table>
<thead>
<tr>
<th>KEY</th>
<th>FUNCTION IN OPERATING MODE</th>
<th>FUNCTION IN PROGRAM MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCUM TOTAL</td>
<td>Displays Accumulative Total when pressed. (refer clause 2.1 for options)</td>
<td>No function</td>
</tr>
<tr>
<td>RATE TOTAL</td>
<td>Toggles between Rate & resettable Total displays.</td>
<td>No function</td>
</tr>
<tr>
<td>RESET</td>
<td>Resets the resettable total display to zero when it is being displayed.</td>
<td>No function</td>
</tr>
</tbody>
</table>
| PROGRAM ENTER | 1) Pressing the Prog. & Rate/Total keys for 5 seconds enters you into the program mode.
2) Displays model & software revision No. | 1) Each press steps you through each level of the program chart.
2) Holding for 3 seconds fast tracks to the end of the program from any program level. |
| | No function | Selects the digit to be set, the selected digit will be “flashing” indicating that it can be incremented. |
| | No function | Increments the selected digit each time that it is pressed. |

3. INSTALLATION

3.1 Remote Mounting – GRN Housing

![Surface mount footprint](image1)

Surface mount footprint
(use 4 screws supplied)

![Wall mount using optional bracket set](image2)

Wall mount using optional bracket set *(P/No. AWM)*
3.1 Remote Mounting (continued)

* Vertical pipe mount

Conduit entries have an integral moulded seal, to remove break seal out using suitable lever (eg. screwdriver or rod)

* Horizontal pipe mount

* order Pipe mount kit P/No. APM comprising two brackets, screws and worm drive clamps.

Panel mount

Cut a 106.5mm (4.2") diameter hole in panel
3. INSTALLATION

3.1.1 Remote Mounting - Aluminium Alloy Housing

Surface mount footprint
use 4 off 3 x 8mm self tapping screws supplied

Wall mount bracket
Optional, P/No. AWM

Panel mount options

Cut a 71mm x 83mm (2.8 x 3.3") opening in panel.

Drill 4 holes to take M4 screws on a 68.0 x 89.6mm pitch (2.68" x 3.53")

Mount using 4 x M4 nuts & washers, tap panel or use rear case as shown

3 x M16 conduit entries @ 30mm pitch

See panel mount template page 18
3.1.1 Remote Mounting (continued)

* Pipe mount

* order Pipe mount kit P/No. APM comprising two brackets, screws and worm drive clamps.

Optional facia protector, 3mm clear polycarbonate plate with access port for keys. Order P/No. 1306061.

* Horizontal pipe mount
3.2 Flowmeter connections - unpowered sensors
 (for I.S. installations refer to I.S. supplement)

<table>
<thead>
<tr>
<th>Flow input A & B switch functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminals 1, 2 & 5 replicate terminals 3, 4 & 5 for dual flow inputs</td>
</tr>
<tr>
<td>Switch 1: ON engages 0.01µf capacitor to suppress reed switch bounce</td>
</tr>
<tr>
<td>Switch 2: ON engages 1 meg Ω pull up resister</td>
</tr>
<tr>
<td>Switch 3: ON engages 820Ω pull down resister</td>
</tr>
</tbody>
</table>

1. Reed switch (200hz max.)

DIP switch 1 & 2 are on

Ground screen at -0V (5)

2. Voltage Pulse (& pulse wires)

All DIP switches off

Ground screen at -0V (5)

3. Coil (Turbine & paddle style flowmeters – minimum 15mV p-p)

All DIP switches off (position switch 1 ON if unit is effected by line noise)

use twisted pairs
3.2 Flowmeter connections - powered sensors
 (for I.S. installations refer to I.S. supplement)

4. Hall effect (5~24Vdc open collector)

 ![Hall effect diagram]

 DIP SW2 (pull up) is on

 1 Flow Input B
 2 Flow Input A
 3 -0V (ground)
 4 +8~24Vdc in
 5 Pulse output
 6 +4~20mA output
 7 -4~20mA output
 8 Low flow alarm
 9 High flow alarm
 10 not used
 11 not used
 12 not used
 13 not used
 14 not used

 NOTE: Limit supply to 8.5Vdc through an approved barrier for
 intrinsically safe NAMUR proximities

5. Namur (inductive proximity switch)

 ![Namur diagram]

 DIP SW3 (pull down) is on

 1 Flow Input B
 2 Flow Input A
 3 -0V (ground)
 4 +8~24Vdc in
 5 Pulse output
 6 +4~20mA output
 7 -4~20mA output
 8 Low flow alarm
 9 High flow alarm
 10 not used
 11 not used
 12 not used
 13 not used
 14 not used

 NOTE: Limit supply to 8.5Vdc through an approved barrier for
 intrinsically safe NAMUR proximities

6. Current modulated pulse (4mA to 20mA pulse amplitude)

 ![Current modulated pulse diagram]

 DIP switches off

 1 Flow Input B
 2 Flow Input A
 3 -0V (ground)
 4 +8~24Vdc in
 5 Pulse output
 6 +4~20mA output
 7 -4~20mA output
 8 Low flow alarm
 9 High flow alarm
 10 not used
 11 not used
 12 not used
 13 not used
 14 not used

 NOTE: Position a 100Ω, ¼W resistor across terminals 3 & 5
3.3 Wiring connections (for I.S. installations refer to I.S. supplement)

External DC powering – required for powered flow sensors, flow alarms or pulse outputs & dual flow inputs.

Powering via 4~20mA loop
(Negative referenced)

Powering via 4~20mA loop
(Positive referenced)

Wiring requirements : Use multi-core screened twisted pair instrument cable (0.25 – 0.5mm²) for electrical connection between the instrument and any remote flowmeter or receiving instrument. The screen needs to be earthed to the signal ground of the receiving instrument only to protect the transmitted signal from mutual inductive interference.

Instrument cabling should not be run in a common conduit or parallel with power and high inductive load carrying cables, power surges & power line frequencies may induce erroneous noise transients onto the signal. Run instrument cables in a separate conduit or with other instrument cables.
Pulse & Alarm Outputs

Current Sinking outputs (NPN)
Current sinking derives its name from the fact that it “sinks current from a load”. When activated the current flows from the load into the appropriate output (7,13 & 14).

Driving a logic input — The output voltage pulse is typically the internal voltage of the load. The load would normally have an internal pull up resistor on its input as shown.

Driving a coil — The NPN style of output is to be used when driving a coil. The coil load is obtained by dividing the coil voltage by coil impedance (\(\Omega\)), is expressed in amps & is not to exceed 0.1A. The coil voltage is connected across & must match the RT supply voltage & the output (7,13 & 14).

Current Sourcing outputs (PNP)
Current sourcing gets its name from the fact that it “sources current to a load”. When activated the current flows from the output (7,13 & 14) into the load. When wired as below the output voltage pulse is the supply voltage of the load. The load would normally have an internal pull down resistor on its input as shown.

Set jumper(s) — All outputs to PNP

Do not tie 0 volts of the logic input to 0 volts of the instrument when wired in PNP configuration
4. PROGRAM PARAMETERS

Note: The instrument defaults out of the program mode if no programming entries are made after 4 minutes.

4.1 PIN No. Program Protection
Any user defined PIN number other than 0000 will engage the program protection feature, failure to input the correct PIN number will deny the ability to change any of the program parameters but will allow the user to step through and view the existing program parameters.

Only one PIN number may be set but this can be changed at any time after gaining access through PIN entry. A second back up PIN number is installed at the factory should the programmed PIN be lost or forgotten. (refer bottom of page 17 for the back up PIN No.)

4.2 Resetting Accumulated Total
Resetting the accumulated total can only be done at level 2 (L2) in the program mode.

4.3 Engineering Units (refer clause 1.4)
Select from available Engineering units to right of the display. For other engineering units set display to show no engineering units & program a suitable K-factor.

4.4 K-factor (scale factor)
Enter K-factor starting with the most significant number, up to 7 whole numbers & 3 decimal numbers can be entered. Trailing decimal numbers move into view as digits to the right are progressively selected, any significant digits which may move from view remain functional.

4.5 Rate conversion factor
A rate conversion feature is available & is explained at level 6 in the program chart (page 14). When enabled the analog output under rate conversion needs to be programmed in relation to the “TOTAL” engineering units.

4.6 Rate dampening
Dampening is available to smooth out fluctuating flow input signals in order to provide a stable rate display & analog output. Most input signal are reasonably stable and need only a low setting value of 40 to 70 (see response graph on page 19).

4.7 Low frequency cut-off
This feature is explained in clause 2.4 (page 5).

4.8 Pulse Outputs (for this feature the instrument must be externally powered as per page 10) The pulse output is link selectable as a scaleable pulse or non-scaled repeater pulse & NPN (current sinking) or PNP (current sourcing) style pulse capable of switching up to 1 amp. Pulse scaling, when selected, is set as the number of litres / gallons etc. per output pulse Eg. 0.1 litres/pulse, 10 litres/pulse, 100 gallons/pulse. Range is 0.1 - 9999.9 Eng.unit/pulse. The totalising display visually slows to two updates/sec. if the scaled pulse output is selected.

The pulse width (pulse duration 1:1) automatically adjusts to the output frequency defaulting to a maximum pulse width of 300 milliseconds at frequencies below 1.66hz. To calculate pulse width at higher frequencies use: 1000 ÷ (hz x 2) = pulse width in milliseconds.

4.9 Non Linearity Correction (NLC) - Linearisation
Linearisation enables the instrument to correct for known inaccuracies in a flowmeter thereby improving the overall accuracy and in many cases increasing the effective flow range (turndown) of the flowmeter. Refer to program level L12, page 15 for setting NLC points. NLC can be used without external power however, battery life is reduced according to usage.
4.10 Presetting battery power levels
When the instrument is operated under battery power only a special “Power Mode” program option will appear at level 13 within the programming routine. A choice of three battery power modes enable maximisation of the battery life according to operational requirements:

Ultra Power Save: Typically selected if reading the register infrequently. The display scrolls a prompt “PRESS ANY KEY”, when a key is pressed display wakes up for 4 minutes then returns to sleep mode* greatly extending the battery life. In sleep and programming modes flow is always continually totalised.

Standby: Display becomes active whenever a key is pressed or product flows through the flowmeter. Display returns to sleep mode after 4 minutes of no flow input or key actions, prompt then returns to “PRESS ANY KEY”.

Continuous: Display is active at all times resulting in reduced battery life. Display reverts from Rate to Total after 4 minutes to reduce battery draw.

When the battery voltage is low a battery low indicator will appear on the display.

5. ADDITIONAL PROGRAM PARAMETERS

5.1 Analog Output *(loop powered)*
The loop powered 4~20mA output can be spanned anywhere within the flow meter range. Testing the current loop is available during programming when 4mA will output at programming level L15 and 20mA will output at level L16 *(page 16).* **Note.** If using the Rate Conversion Factor (RCF) the span for 20mA must be set in relation to the total units, not the rate units.

5.2 Flow Alarms *(The instrument must be externally powered as per page 10)* Two flow alarm FET *(transistor)* outputs may be programmed for Low & High flow alarms. An optional plug in alarm board is available having dual SPDT 5 amp electro-mechanical contacts.

5.3 Flow Alarm Deadband
Alarms are NPN/PNP link selectable. An adjustable deadband *(reset differential)* provides a trip buffer zone about the set point in order to overcome alarm “chattering” when the flow rate is fluctuating close to the alarm set point. Deadband is entered as % of each set point value *(refer to page 16 for an example).*

5.4 Dual Flow Inputs *(see also page 20 for complete description)*
When externally powered at terminals 5 & 6 the instrument accepts inputs from two sources (input A & input B), a separate scaling factor is entered for the second flow input, the instrument is then programmed for one of the dual input functions of A+B, A-B, A÷B *(ratio)* or FUEL *(diesel engine fuel loops).*

A+B Both inputs are added and displayed as one for Rate & Totals.

A-B Input B is subtracted from input A & the difference is displayed for both Rate & Totals.

A÷B Totalises A & B separately & Rate is a function of A÷B to give instantaneous ratio.

FUEL Is the function of A-B but exclusively used for fuel loops on diesel engines

Note: - When using A & B inputs the functions of Scaled Pulse output, Alarm set points and the Analog output are relevant to resultant computation between A & B.
6. PROGRAMMING

6.1 Program levels 1–7

<table>
<thead>
<tr>
<th>L3</th>
<th>SET ENGINEERING UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG UNIT</td>
<td>Ltr m3 gal lbs kgs (none)</td>
</tr>
</tbody>
</table>

- **L4** ENTER NUMBER PULSES PER Ltr m3 kg gal lb (unit of measure)
 - 000000.001 ~ 999999.999

- **L5** SET DECIMAL POINTS
 - DPI TOTAL: 0 0.0 0.00 0.000
 - DPI ACCUM TOTAL: 0 0.0 0.00 0.000
 - DPI RATE: 0 0.0 0.00 0.000

- **L6** RATE CONVERSION Y / N
 - RATECON: Y / N

- **L7** SET TIME BASE FOR RATE
 - Ltr gal etc / SEC MIN HR OR DAY

- **L1** CHANGE PIN No. Y / N
 - NU PIN: Y / N
 - YES: PIN ****
 - NO: if incorrect PIN No. is entered

- **L2** RESET ACCUM TOTAL Y / N
 - RESET: Y / N

- **L7** SET TIME BASE FOR RATE
 - Ltr gal etc / SEC MIN HR OR DAY

- **END** Y / N

K-factor (scale factor)

- The number of pulses per unit volume or unit mass.
- For example: 20.465 pulses / litre, gallon, kg etc.

WARNING on rate conversion factor (RCF)

- This feature need only be programmed when the total & rate engineering units are to be different. Eg: m³ for total and litres for rate.
- The conversion factor is the number needed to convert to the required rate unit, some examples are:

<table>
<thead>
<tr>
<th>Total unit</th>
<th>Rate unit</th>
<th>Conversion factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic metres</td>
<td>Litres /</td>
<td>1000.000</td>
</tr>
<tr>
<td>US Barrels</td>
<td>USgal /</td>
<td>42.000</td>
</tr>
<tr>
<td>Imp. gallons</td>
<td>Litres /</td>
<td>4.546</td>
</tr>
</tbody>
</table>

Details Only

- If incorrect PIN No. is entered.

- IN VALID PIN VIEW EXISTING PROGRAM DETAILS ONLY
6.1 Program levels 8 ~ 13

L8 SET RATE DAMPENING

DAMP 00 ~ 99 RATE

L9 SET LOW FREQUENCY CUT-OFF

HERTZ 0.0 ~ 9.9

L10 OUTPUT PULSE REQUIRED Y / N

PULSE Y - N

L11 ENTER No. OF gal - litres etc PER OUTPUT PULSE

OP XXXX.X

L12 NON LINEAR CORRECTION

NLC Y - N

L13 CHANGE POWER MODE Y / N

CHANGE Y - N (applicable under battery only)

1) ULTRA POWER SAVE
2) STANDBY
3) CONTINUOUS (refer clause 4.10)

Low frequency cut-off

The low frequency cut-off is generally set to 0.0Hz (disabled) for most applications other than those described at clause 2.4 on page 5

Non-linear correction (NLC) (overrides K-factor set at L4)

1) Any number up to 10 frequency points of non-linearity can be programmed with point 0F being the pulse output frequency at the lowest flow rate.

2) If any frequency point is set to zero Hz then all remaining NLC points up to point 9F will automatically assume the last entered NLC K-factor and the program will advance to the next level. This feature simplifies programming when not all points of correction are used.

3) Linear interpolation is used between frequency points, except above the last entered frequency where the last entered NLC K-factor is applied.

continued
6.2 Program levels 14~24

1) Low flow alarm occurs when the flow falls below the set point, High flow alarm occurs when the flow goes above the set point.

2) Deadband (Reset Differential), provides a buffer zone about the alarm set point in order to avoid alarm output “chattering” on & off when the flow rate is hovering about an alarm set point.

The % deadband applies above the Low set point and below the High set point. Deadband is set as a percentage of each set point.

Eg: 5% deadband at a low alarm set point of 100 L/hr will cause a low alarm when the flow drops to 100 L/hr, the alarm will not switch off until the flow increases above 105 L/hr.
6.3 Program detail record

<table>
<thead>
<tr>
<th>L1</th>
<th>User selected PIN No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3</td>
<td>Engineering units</td>
</tr>
<tr>
<td>L4</td>
<td>K-factor (scale factor) K =</td>
</tr>
<tr>
<td>L5</td>
<td>Decimal for reset Total</td>
</tr>
<tr>
<td></td>
<td>Decimal for Accum. total</td>
</tr>
<tr>
<td></td>
<td>Decimal for Rate</td>
</tr>
<tr>
<td>L6</td>
<td>Rate conversion factor</td>
</tr>
<tr>
<td>L7</td>
<td>Time base for Rate</td>
</tr>
<tr>
<td>L8</td>
<td>Rate dampening</td>
</tr>
<tr>
<td>L9</td>
<td>Low frequency cut-off</td>
</tr>
<tr>
<td>L10</td>
<td>Pulse output</td>
</tr>
<tr>
<td>L12</td>
<td>Non linear correction</td>
</tr>
<tr>
<td></td>
<td>- frequency 0</td>
</tr>
<tr>
<td></td>
<td>- frequency 1</td>
</tr>
<tr>
<td></td>
<td>- frequency 2</td>
</tr>
<tr>
<td></td>
<td>- frequency 3</td>
</tr>
<tr>
<td></td>
<td>- frequency 4</td>
</tr>
<tr>
<td></td>
<td>- frequency 5</td>
</tr>
<tr>
<td></td>
<td>- frequency 6</td>
</tr>
<tr>
<td></td>
<td>- frequency 7</td>
</tr>
<tr>
<td></td>
<td>- frequency 8</td>
</tr>
<tr>
<td></td>
<td>- frequency 9</td>
</tr>
<tr>
<td>L13</td>
<td>Power mode</td>
</tr>
<tr>
<td>L14</td>
<td>Analog output</td>
</tr>
<tr>
<td>L15</td>
<td>- zero set point</td>
</tr>
<tr>
<td>L16</td>
<td>- span set point</td>
</tr>
<tr>
<td>L17</td>
<td>Alarm outputs</td>
</tr>
<tr>
<td>L18</td>
<td>- low set point</td>
</tr>
<tr>
<td>L19</td>
<td>- low deadband</td>
</tr>
<tr>
<td>L20</td>
<td>- high set point</td>
</tr>
<tr>
<td>L21</td>
<td>- high deadband</td>
</tr>
<tr>
<td>L22</td>
<td>Dual flow inputs</td>
</tr>
<tr>
<td>L23</td>
<td>- K-factor for B input</td>
</tr>
<tr>
<td>L24</td>
<td>- dual input function</td>
</tr>
</tbody>
</table>

Your back up 4 digit PIN number is 1820
To remember consider the base model No. RT - “R” is the 18th & “T” the 20th letter of the alphabet.
7. TERMINAL DESIGNATION

Terminals 1, 2 & 5 replicate terminals 3, 4 & 5 for dual flow inputs

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Flow input A</th>
<th>Flow input B</th>
<th>High flow alarm</th>
<th>Low flow alarm</th>
<th>+4~20mA output</th>
<th>-4~20mA output</th>
<th>not used</th>
<th>not used</th>
<th>-0V (ground)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Pulse output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terminal layout - links & remote switch inputs

LINK 7A
Select SPO or REP pulse output (see clause 4.8)

LINK 7B
Select NPN or PNP style pulse output

SWITCH 3: ON engages 820Ω pull down resistor
SWITCH 2: ON engages 1 meg Ω pull up resistor
SWITCH 1: ON engages 0.01μf capacitor to suppress reed switch bounce

Inhibit total switch (clause 2.5)

LINKS 13 & 14
Select NPN or PNP style alarm outputs

REMOTE KEYS
Reset
Rate / Total
Program
Accum. Total
Use momentary action switches
Rate dampening value verses time to reach new reading (for an instantaneous change in actual flow rate).
Dual flow inputs

When externally powered at terminals 5 & 6 the instrument provides a dual flow input feature which can be configured for one of four available functions of A+B, A-B, A÷B (ratio) or FUEL (diesel fuel loops).

The dual flow inputs are referred to as “INPUT A” at terminals 3 & 4 and ”INPUT B” at terminals 1 & 2.

Function A+B

Both inputs are added together and displayed as one for Rate, Resettable & Accumulative Totals.

<table>
<thead>
<tr>
<th>Displays</th>
<th>Rate</th>
<th>: The total of A+B flow rates displayed as one rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reset Total</td>
<td>: The total of A+B totals displayed as one total.</td>
</tr>
<tr>
<td></td>
<td>Accum. Total</td>
<td>: The total of A+B accum.totals displayed as one total.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Scaled Pulse</th>
<th>: Scaled pulse value is relative to the totalised values.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alarms</td>
<td>: Alarms are taken relative to the displayed rate.</td>
</tr>
<tr>
<td></td>
<td>Analog Output</td>
<td>: 4~20mA output is proportional to the displayed rate.</td>
</tr>
</tbody>
</table>

Function A-B & Function FUEL

Input B is subtracted from input A, the resultant is displayed as one for Rate, Resettable & Accumulative Totals. A-B function will record both positive and negative resultant count values whereas the FUEL function does not record any negative counts values, this feature offsets the effect of air entrainment in the return fuel line which over wise would show as negative fuel usage which is known to occur at idle speeds on some injected engines.

<table>
<thead>
<tr>
<th>Displays</th>
<th>Rate</th>
<th>: The difference of A-B flow rates displayed as one rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reset Total</td>
<td>: The difference of A-B totals displayed as one total.</td>
</tr>
<tr>
<td></td>
<td>Accum. Total</td>
<td>: The difference of A-B accum.tot. displayed as one total.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Scaled Pulse</th>
<th>: Scaled pulse value is relative to the totalised values.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alarms</td>
<td>: Alarms are taken relative to the displayed rate.</td>
</tr>
<tr>
<td></td>
<td>Analog Output</td>
<td>: 4~20mA output is proportional to the displayed rate.</td>
</tr>
</tbody>
</table>

Function A÷B

Input A is divided by input B, the resultant is displayed as an instantaneous Ratio, Resettable & Accumulative Totals are independently displayed for both A & B inputs.

<table>
<thead>
<tr>
<th>Displays</th>
<th>Rate</th>
<th>: The resultant Ratio between A+B flow rates displayed as an instantaneous Ratio.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reset Total input A</td>
<td>: The total of input A.</td>
</tr>
<tr>
<td></td>
<td>Reset Total input B</td>
<td>: The total of input B.</td>
</tr>
<tr>
<td></td>
<td>Accum. Total input A</td>
<td>: The Accumulative total of input A.</td>
</tr>
<tr>
<td></td>
<td>Accum. Total input B</td>
<td>: The Accumulative total of input B.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Scaled Pulse</th>
<th>: The scaled pulse output relates to input A .</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* Alarms</td>
<td>: Alarms are taken relative to the displayed ratio.</td>
</tr>
<tr>
<td></td>
<td>* Analog Output</td>
<td>: 4~20mA output is proportional to the displayed ratio.</td>
</tr>
</tbody>
</table>

*Note: The alarm and analog outputs for the A+B function are set in the initial stages of programming in relation to rate units eg: setting the analog output range to 4mA = 00.000 litres/min and 20mA = 10.000 litres/min, the analog output will be proportional to the ratio rate display of 0.000~10.000 (eg. 4mA @ 0.000 and 20mA @ 10.000). The same set up analogy applies to the alarm settings.
Aluminium Alloy Housing

PANEL CUT OUT :
71mm high x 83mm wide
(2.8” x 3.3”)

Tapping :
Drill & tap 4 x M4 holes where indicated.
Tapping drills: 3.4mm, 1/8” or #30 drill.

Clearance drills :
Clearance drills: 4.7mm, 3/16” or #13 drill.
Index

8. ALPHABETICAL INDEX

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Accumulative total</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Alarm deadband</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Alarm outputs</td>
<td>15, 17</td>
</tr>
<tr>
<td></td>
<td>Analog output</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>Battery power levels</td>
<td>17</td>
</tr>
<tr>
<td>D</td>
<td>DC power</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Decimal point</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Displays</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Dual flow inputs</td>
<td>17, 24</td>
</tr>
<tr>
<td>E</td>
<td>Engineering units</td>
<td>6, 15</td>
</tr>
<tr>
<td></td>
<td>External DC powering</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>Flowmeter connections</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td>Flow rate</td>
<td>7, 16</td>
</tr>
<tr>
<td>I</td>
<td>Inhibit totals</td>
<td>7, 22</td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>8 ~ 15</td>
</tr>
<tr>
<td></td>
<td>Input signals</td>
<td>12, 13</td>
</tr>
<tr>
<td>K</td>
<td>Keypad functions</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>K-factor (scale factor)</td>
<td>16, 18</td>
</tr>
<tr>
<td>L</td>
<td>LCD displays</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Loop powering</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Link selectors (for outputs)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Low frequency cut-off</td>
<td>7</td>
</tr>
<tr>
<td>M</td>
<td>Model number designation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mounting options</td>
<td>6 ~ 11</td>
</tr>
<tr>
<td>N</td>
<td>Non linear correction</td>
<td>16</td>
</tr>
<tr>
<td>O</td>
<td>Operation</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Output selector links</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>PIN number protection</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Presetting battery power levels</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Programming</td>
<td>18 ~ 20</td>
</tr>
<tr>
<td></td>
<td>Program detail record</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Pulse outputs</td>
<td>15, 16</td>
</tr>
<tr>
<td>R</td>
<td>Rate conversion factor</td>
<td>16, 18</td>
</tr>
<tr>
<td></td>
<td>Rate dampening</td>
<td>16, 23</td>
</tr>
<tr>
<td></td>
<td>Rate display</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Rate time base</td>
<td>6, 18</td>
</tr>
<tr>
<td></td>
<td>Remote switch inputs</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Resettable total</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Resetting accumulative total</td>
<td>16</td>
</tr>
<tr>
<td>S</td>
<td>Scale factor (K-factor)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Scaled pulse output</td>
<td>15, 16</td>
</tr>
<tr>
<td></td>
<td>Specifications</td>
<td>5</td>
</tr>
<tr>
<td>T</td>
<td>Terminal designation</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Terminal layout</td>
<td>22</td>
</tr>
<tr>
<td>W</td>
<td>Wiring of analog output</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Wiring of flowmeter inputs</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td>Wiring of pulse outputs</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Wiring to external supplies</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Wiring requirements</td>
<td>14</td>
</tr>
</tbody>
</table>
Notes: